

PYTHIA SERVICE

WHITEPAPER
BY VIRGIL SECURITY

WHITE PAPER

May 21, 2018

CONTENTS

Introduction 2

How does Pythia solve these problems? 3

Are there any other solutions? 4

What is Pythia? 4

How does it work? 4

User login flow 5

Performance: faster than bcrypt & scrypt 5

Protection against password DB breach & online guessing attacks 6

Open source 6

The math 6
From hashes to numbers 6
Elliptic curve BLS12-381: also used by Zcash cryptocurrency 7
Blinding on the client makes Pythia not see the password 7
Transformation of blinded value with Pythia’s secret number on the Pythia sever 7
Deblinding on the client 7
Crypto primitives 8

Basic flows 8
Pythia initialization for the application 8
End user registration on the application service 9
End user password validation 9
Rotate transformation key / issue new password update token 10
Purge transformation key 10

Introduction
We all want to move beyond passwords. Unfortunately, it's the most prevalent form of
authentication. The large majority of online services, devices, laptops, and phones require
passwords. And worst, the way that most services are storing and protecting passwords is
fundamentally flawed.

Criminals break into online services and steal password databases. Once they have these
password databases, they can run cracking software to recover most passwords. The simplest
form of recovery is to use rainbow tables, which is a large dictionary file of hashes mapped to
passwords. Attackers simply look up a hash and find what password it was generated from.

Another way to recover stolen password databases is brute-force/dictionary attacks. On a single
laptop an attacker can try 1 trillion different passwords in 2 weeks (2^20 passwords/second *
2^20 seconds/2 weeks = 2^40 = 1T). Serious attackers can throw a few thousand dollars of
hardware--graphics processing units (GPUs)--and that number goes up to 10 quadrillion. That's
insane. On the dark markets, passwords sell in the range of $1-30 dollars per account [1], which
is a big incentive for criminals.

The current industry-recommended best practice is for services that store passwords to use
"hard functions" to process these passwords. Simply, the tools scrypt, bcrypt, and iterated
hashing make password processing slower (or use more memory) and so the burden is also
applied to the password attackers. Unfortunately, these techniques put the same burden on the
good guys--the service also has to pay this performance penalty on every legitimate login.
These techniques don't give any leverage to the defenders. (Unlike, say, encryption, where the
legitimate key holder can encrypt and decrypt quickly, but that attacker has an exponentially
harder problem trying to crack the key.)

[1] On the Economics of Offline Password Cracking - Purdue CS

How does Pythia solve these problems?
Pythia provides multiple innovations over state-of-the-art:

● Cryptographic leverage for the defender (by eliminating offline password cracking
attacks),

● Detection for online attacks, and key rotation to recover from stolen password
databases,

● Designed for performance and scalability,
● No impact to end-user experience.

https://www.cs.purdue.edu/homes/jblocki/papers/SP18EconomicsOfOfflinePasswordCracking.pdf

Are there any other solutions?
2-factor authentication: in theory, 2FA helps avoid an account takeover. While this may be a
potential solution, 2FA is after-the-fact (i.e. the attacker already reverse-engineered the users’
passwords and they can use them elsewhere). Also, most users don’t enable 2FA because of
inconvenience.

Salted hash: salting is when you introduce random characters into passwords before hashing
them. While salting randomizes hashes, they have one major flaw: if you ever built a
hashed-salted user login function, you know that you’ll need to retrieve the salt to re-generate
the user’s password hash to compare it to the salted hash you store in your user database. I.e.
you have to store the salt with the hashed password in your user database: so, it’s available to
attackers too.

Super-strong passwords: this is your best option today. Require super-strong passwords from
every single one of your users and make sure that they don’t reuse that same password
elsewhere. Unfortunately, this is practically impossible.

What is Pythia?
Simply put, Pythia is a service that:

1. Replaces hashing & salts with public and private keys, making cracking a lot more
expensive,

2. Enables the separation of your password database from the private key that’s protected
by Pythia.

3. Enables the immediate rotation of the private key, rendering a stolen password database
unusable.

These 3 properties will keep your user passwords are safe from today’s password breach
techniques, even if your password database has gotten into the wrong hands.

How does it work?
The typical Pythia implementation consists of the following components:

● Your web server where you run your user auth code,
● Your database where you store your users’ usernames and hashed passwords today,
● A cloud-based Pythia service account that your web server uses to generate

breach-proof-passwords, which will replace your current password hashing practice.

User login flow

1. User enters password which goes up to your web server.
2. Your web server hashes the password and encrypts it using a Blind() function from the

Pythia-lib. Blinding makes sure that the Pythia service has no knowledge of the
password.

3. The Pythia service transforms the blinded password using a secret that only Pythia
knows.

4. Using the blinding secret from Step 2, your web server de-blinds the response from
Pythia. The end result is the breach-proof-password that replaces your current password
hash field value in your user table.

5. Every time users log in, you run steps 1-4 and compare if the login-time
breach-proof-password matches with the registration-time breach-proof-password. If
they do, the password is correct.

Performance: faster than bcrypt & scrypt
Depending on the link between your web backend and the Pythia server, your user login may be
faster than the existing techniques of iterated hashing, bcrypt, and scrypt. Instead of slowing
down attackers (and defenders) by running harder and harder operations, Pythia uses
cryptography to give defenders back the advantage. Pythia was designed with the goal of
scaling up to protecting every password in the world.

Protection against password DB breach
& online guessing attacks
Pythia has built-in support for key rotations and detecting online guessing attacks. A
website/app operator can request a key rotation from the Pythia server, update all the stored
passwords, and, then request that the original key be destroyed. Once it is, any stolen
passwords are useless. No one can recover them without the key.

Pythia also builds in online attack detection. If a password database is stolen it can't be cracked
offline anymore, but an attacker can send requests to the crypto server. Pythia was designed so
that all requests require an unforgeable user ID and client ID provided in plaintext (not blinded
like passwords). This allows the Pythia service to detect attacks. Detection is very powerful and
often overlooked as a defensive mechanism--Pythia can lock accounts, throttle (slow down)
requests, and send out alerts to your web backend.

Open source
Pythia’s originators are: Adam Everspaugh and Rahul Chaterjee, University of
Wisconsin—Madison; Samuel Scott, University of London; Ari Juels and Thomas Ristenpart,
Cornell Tech.

Virgil Security implemented the service for developers and published it on GitHub at
https://github.com/VirgilSecurity/pythia under the AGPL-3.0 license:
https://github.com/VirgilSecurity/pythia/blob/master/LICENSE

The math

From hashes to numbers
Today, passwords are protected by being hashed (hashing theoretically is a one-way function).
A hash is nothing more than an array of bytes which uniquely identifies the password.

Another form which can represent an array is a number. The bigger the array - the bigger the
number. So in Pythia, instead of hashing the password as most auths do, we convert the
password to a big (256-bit) number.

https://github.com/VirgilSecurity/pythia
https://github.com/VirgilSecurity/pythia/blob/master/LICENSE

Elliptic curve BLS12-381: also used by Zcash
cryptocurrency
Pythia works with elliptic curve “BLS12-381”: the same curve that’s used in Zcash, which the
Zcash team claims to be “the first open, permissionless cryptocurrency that can fully protect the
privacy of transactions using zero-knowledge cryptography”.

If you’re new to elliptic curves, this is how they work: we start with a point with two coordinates
of x and y.

1. We generate a 256-bit number from the user’s password and hash it into the x
coordinate of the elliptic curve equation,

2. By solving the equation, we get y and check if it fits the chosen elliptic curve.
3. If not, we increment x and try again. We repeat this until y fits on the curve.

Blinding on the client makes Pythia not see the
password
After we get a valid elliptic curve point (x and y now fit on the curve), we generate a big random
number r and multiply the (x, y) point by r. This process is called the blinding and we do it
because we don’t want the Pythia service to see the number we generated from the user's
password (x). The result is another elliptic curve point: X.

Transformation of blinded value with Pythia’s secret
number on the Pythia sever
X together with the user’s unique ID is sent to the Pythia service where this big number is
stored. Then the user’s ID is also converted to the elliptic curve point the same way we did with
the password: let's call this T.

X and T are put into a function called Bilinerar Pairing which produces a single point out of these
two. The resulting point is multiplied by a secret number stored at the Pythia server and
returned to the client. Let's call it Y.

Deblinding on the client
The client calculates an inverse of r and multiplies Y by that inverse to eliminate the random
factor used for Blinding.

https://z.cash/

The result is (user's password hash + User ID) multiplied by the Pythia service's secret.
Because of the discrete logarithm problem, there is no way to tell what the server's secret is or
what the client password's hash is only by looking at the result of the computation.

Crypto primitives

Crypto primitive What we use it for?

Curve BLS12-381 Blinding, transforming, ZKP (zero-knowledge proof)

SHA-384 Blinding, transforming, ZKP (zero-knowledge proof)

HMAC ZKP

Basic flows

Pythia initialization for the application
This is this first action that enables Virgil’s Pythia service for all further calls. To make Pythia
available for the application developer, they must at first register on the Virgil development
portal at https://dashboard.virgilsecurity.com/login and create a new Pythia app.

Application developer is supposed to copy the Proof Key returned returned after Pythia
initialization and deploy them on his application service. Version value is used as a request
parameter in password transformations to fetch proper transformation private Key by the Pythia

https://en.wikipedia.org/wiki/Discrete_logarithm
https://dashboard.virgilsecurity.com/login

service, and Public Key is used by the application service to verify transformations performed
by the Pythia service.

End user registration on the application service
Password blinding can take place on a client or on a web server, it which case one is supposed
to provide a blindingSecret alongside with a transformed password value to make the
Deblind() operation possible after the Pythia server transformed the password.

The proof parameter is supposed to be true for new user registrations (initial password
transformation). This allows validation that Pythia’s response is correct.

End user password validation

Include proof is false here because the password transformation was already verified in the user
registration stage.

Rotate transformation key / issue new password
update token
This scenario gets activated when it's necessary to rotate the application transformation key (i.e.
the password database has been breached). This action involves new transformation key
issuing along with updating all deblinded password stored in the application database. In this
scenario application developer logs into his/her Virgil Dashboard account and activates
application transformation key rotation. Beware that only two active transformation keys may be
active, so this process is unavailable until all legacy transformation keys are purged.

The Virgil Dashboard requests a transformation key rotation, which means that a completely
new key will be generated and the key’s version will be incremented. Developer receives a new
transformation public key (with its version) which is supposed to be saved for further
transformation validations, and password update token which must be applied in
UpdateBreachProofPassword() operation for all the passwords stored in the database.

Purge transformation key
This action is performed on the Virgil Development portal and removes the oldest transformation
key by its version. The newest (HEAD) transformation key cannot be purged.

