
Simple Password-Hardened Encryption Services

Russell W. F. Lai1, Christoph Egger1, Manuel Reinert2,
Sherman S. M. Chow3, Matteo Maffei4, and Dominique Schröder1

1Friedrich-Alexander University Erlangen-Nuremberg
2Saarland University

3Chinese University of Hong Kong
4Vienna University of Technology

Abstract
Passwords and access control remain the popular choice
for protecting sensitive data stored online, despite their
well-known vulnerability to brute-force attacks. A natu-
ral solution is to use encryption. Although standard prac-
tices of using encryption somewhat alleviate the prob-
lem, decryption is often needed for utility, and keeping
the decryption key within reach is obviously dangerous.

To address this seemingly unavoidable problem in
data security, we propose password-hardened encryp-
tion (PHE). With the help of an external crypto server,
a service provider can recover the user data encrypted
by PHE only when an end user supplied a correct pass-
word. PHE inherits the security features of password-
hardening (Usenix Security ’15), adding protection for
the user data. In particular, the crypto server does not
learn any information about any user data. More impor-
tantly, both the crypto server and the service provider can
rotate their secret keys, a proactive security mechanism
mandated by the Payment Card Industry Data Security
Standard (PCI DSS).

We build an extremely simple password-hardened en-
cryption scheme. Compared with the state-of-the-art
password-hardening scheme (Usenix Security ’17), our
scheme only uses minimal number-theoretic operations
and is, therefore, 30% - 50% more efficient. In fact, our
extensive experimental evaluation demonstrates that our
scheme can handle more than 525 encryption and (suc-
cessful) decryption requests per second per core, which
shows that it is lightweight and readily deployable with
large-scale systems. Regarding security, our scheme also
achieves a stronger soundness property, which puts less
trust on the good behavior of the crypto server.

1 Introduction

Online services store huge amounts of sensitive user data
in their databases, such as email and physical addresses,

personal interests, etc. Pragmatically, accesses to this
data is restricted to authorized users by an access con-
trol mechanism instead of by encryption and decryption,
for a very simple reason that (the users of) the online ser-
vices eventually need to use them. Nevertheless, some
information is required to be stored in an encrypted form,
such as credit card information, as mandated by the pay-
ment card industry data security standard (PCI DSS) [1].
Note that any form of encryption is useless if an attacker
gains access to anything which possesses the decryption
capabilities or leads to the decryption. For example, an
attacker who gets access to a password database can first
launch an offline dictionary attack to obtain user pass-
words, then logs in as these users and “legitimately” re-
quests the online service provider to perform decryption.
Even worse, an insider or a persistent attacker who ob-
tains the decryption key can download the entire database
and perform decryption offline. It is clear that as long as
an online service provider has the full capability of de-
crypting the database, an attacker fully compromising it
is just as powerful and can launch catastrophic attacks.

1.1 Password-Hardening Services

To defend against such a powerful attacker, an appeal-
ing approach is to use external crypto services to pro-
vide an extra layer of protection. This is a central idea
in password-hardening (PH) services [2, 3]. In the con-
text of PH, an online service provider who is providing
services to end users is itself a client of a crypto server
providing PH services. Hereinafter, we call the online
service provider as the server and the crypto server as the
rate-limiter1. When an end user registers with the server,
the latter cooperates with the rate-limiter to jointly cre-
ate a record which encrypts the password of the end user.
Later, when this end user logs in with a candidate pass-
word, the server cooperates with the rate-limiter again to

1Lai et al. [3] call them the client and the server respectively.

1

check if the candidate password is identical to the one
encrypted in the corresponding record.

The cooperation requirement above implies PH per-
forms a double encryption of the passwords. What make
PH interesting is its set of four fundamental guarantees
tailored to practical deployment. First, the server (or the
rate-limiter) alone is unable to check whether a candi-
date password is correct. This means the best strategy
for any attacker who has fully compromised the server is
to launch online (instead of offline) attacks. Second, the
rate-limiter can track the number of unsuccessful login
attempts of each end user, and rate-limit password vali-
dation requests, and hence online attacks, on a per-user
basis. The third guarantee is that the rate-limiter learns
no information about the passwords, meaning that PH
is not just “transferring” the problem to the rate-limiter.
Lastly, if either the server or the rate-limiter is compro-
mised, or if the secret keys are in use for quite some time,
the parties can jointly execute a key-rotation mechanism
to refresh their secret keys. Furthermore, the key-rotation
is seamless to the end users and requires arguably min-
imal help from the rate-limiter. Specifically, the server
can locally update the records of its end users without
interacting with the rate-limiter or the end users. This
proactive mechanism provides forward security.

These strong security guarantees of PH make it very
difficult for an attacker to get access to the passwords of
the end users, even if the server is fully compromised.
However, the protection of PH is confined to just the
password itself. An attacker who fully compromises the
server can simply decrypt any encrypted database and re-
trieve all other related data in it.

1.2 Password-Hardened Encryption

The problem of PH services stems from its limitation of
functionality. In an abstract sense, PH can only “en-
crypt” a special message: the password. Decryption is
not possible; one can just test whether a given message
is encrypted. It is thus not suitable for encrypting gen-
eral messages. In other words, PH only provides authen-
tication. To solve this problem, we propose password-
hardened encryption (PHE) services, which is an exten-
sion of PH services that goes beyond authentication and
uses the passwords to secure general data in addition to
the passwords. PHE aims to ensure that any attacker who
can compromise the storage of these encrypted data can-
not decrypt directly.

The formulation of PHE is similar to that of PH de-
scribed above, with the following key differences. When
an end user registers, the server and the rate-limiter
jointly create a record which not only encrypts the user
password but also a secret message. The message can be
a freshly generated key for a symmetric key encryption

scheme (e.g., AES). The server then encrypts any sensi-
tive information belonging to this end user with this key,
and discards the key after encryption. Later, when the
end user logs in, the server and the rate-limiter jointly
validate the given candidate password. If and only if the
password is correct, the server can then recover the key
and proceed to decrypt the sensitive user information.
Figure 1 depicts the basic workflow of a PHE scheme.

1 2

1 2

3

3

End User Server
(Online Service Provider)

Rate-Limiter
(Crypto Service Provider)

En
cr

yp
tio

n
D

ec
ry

pt
io

n

(un, pw) Encrypt(M)Sample M
(e.g., AES key)

Record T
1. Store (un, T)
2. Use M (e.g., to encrypt)
3. Delete M

(un, pw) Retrieve T Decrypt(T)

Message M1. Use M (e.g., to decrypt)
2. Delete M

Figure 1: General Workflow of PHE

PHE inherits all four fundamental security guarantees
provided by PH, with the protection of passwords is ex-
tended to additional secret messages as well. In particu-
lar, PHE inherits the key rotation capability. This makes
PHE an appealing approach, for example, to conform to
PCI DSS which requires credit card information to be
encrypted by a mechanism supporting key rotation.

With per-user secret messages, each user can now en-
joy the benefit of encrypting their respective data using
an independent key. Data leakage is thus limited even if
some of the keys are compromised. More importantly, if
the server decides to rotate not only its own secret key
but also some of the (data-)keys, the rotation is not as
costly as re-encrypting the whole database.

In a nutshell, PHE is a one-package data-security solu-
tion for online service providers who employ password-
based authentication and store sensitive user data.

1.2.1 General Applicability of PHE

PHE can be applied to any scenarios where a password-
based authentication system is employed to protect user
data, as a cryptographic replacement to access-control-
based protection. For example, it can be used by on-
line retail stores and e-commerce providers to encrypt

2

credit card numbers and especially the CVV (card verifi-
cation values). It can also be used as a more secure pass-
word vault, where the user password serves as a master
password for encrypting other (high-entropy) passwords
(with the aid of the rate-limiter).

1.3 Our Contributions
Our contributions can be summarized as follows:

• We introduce and formalize the notion of PHE in or-
der to protect arbitrary user data while retaining the
functionality and security features of the underlying
PH. The definitional framework encompasses dedi-
cated cryptographic games as well as a soundness
property that is stronger than the one commonly
adopted in PH services, inasmuch as it puts less trust
on the good behavior of the rate-limiter.

• We propose a remarkably simple PHE construc-
tion. Its novelty lies in the fact that it reduces the
number of number-theoretic operations (in particu-
lar, dispenses from the implicit use of ElGamal en-
cryption) in previous PH services, despite providing
stronger security guarantees.

• Our PHE instantiation is between 30% and 50%
more efficient than previous PH (without E) con-
structions. Our extensive experimental evaluation
demonstrated that our PHE scheme is highly effi-
cient (∼ 10ms per request) and scales well to high-
throughput scenarios.

• We prove the security of our construction in the
random oracle model under the decisional Diffie-
Hellman (DDH) assumption.

1.4 Technical Overview
1.4.1 A Simpler and More Efficient Construction

To appreciate the technical contribution brought by our
PHE construction, we first consider a natural attempt
which builds PHE by using PH as a blackbox. Such a
generic construction will likely require the use of zero-
knowledge proof systems for a complex language depen-
dent on the PH scheme. Since our aim is to build a practi-
cal scheme which is plausible for deployment, we decide
to modify the construction of the PH scheme Phoenix [3]
in a non-black-box way to become a PHE scheme. More
interestingly, it turns out that a major component in the
construction of Phoenix – a variant of the Cramer-Shoup
encryption scheme [4] – is unnecessary. With this ob-
servation, we design an extremely simple PHE scheme
(which also gives a much simpler PH scheme) as follows.

To encrypt the message M under the password pw, the
server and the rate-limiter sample random nonces nS and
nR respectively, and jointly compute

(Hx
R,0Hy

S,0, Hx
R,1Hy

S,1My)

where HR,b = HR(nR,pw,b) and HS,b = HS(nS ,pw,b)
are (multiplicative) group elements output by hash func-
tions HR and HS , b ∈ {0,1}, and x and y are the secret
keys of the rate-limiter and the server respectively.

To decrypt with the password pw, the server computes
Hy
S,0 to recover the hash value Hx

R,0, and sends the lat-
ter to the rate-limiter. Upon verifying the correctness of
Hx
R,0, the rate-limiter returns Hx

R,1. The server then com-
putes the value Hy

S,1. Together with Hx
R,1, the server can

then recover M.

1.4.2 Stronger Soundness using Efficient Proofs

We observe that in the existing definition of PH [3],
in the case where the rate-limiter rejects in the valida-
tion phase, it is indistinguishable to the server whether
the rate-limiter refuses to entertain the validation request
(even when the password is correct) or the password in-
deed does not match the record. To address this issue, we
define the (strong) soundness property, which requires
the rate-limiter to explain not only the reasons for accep-
tance, but also for rejections.

In any real-world instantiation with strong soundness,
compromised/cheating rate-limiters which (selectively)
prevent legitimate logins (using correct passwords) can
be detected. It further means that external parties can
serve as rate-limiters with minimal trust requirements.

To achieve our newly defined soundness, additional
zero-knowledge proofs need to be generated by the rate-
limiter during both encryption and decryption. This does
not impact efficiency in any significant way, as confirmed
by our experimental evaluation.

1.4.3 Strengthened yet Simplified Definitions

From the viewpoint of extending the definition of PH to
that of PHE, we made the following contributions other
than the stronger soundness requirement. Firstly, all se-
curity experiments are modified to reflect attacks against
not only the passwords but also the secret data to be en-
crypted. Furthermore, most of the syntax and security
experiments are more refined and simplified when com-
paring to their PH counterparts [3]. For example, in the
definition of PH [3], the username of an end user serves
as a common input to both the server and the rate-limiter
in the enrollment and validation protocols. This input is
actually unnecessary (in the security definition nor in the
construction) and is not present in our definition.

3

In short, apart from adding encryption and decryp-
tion functionalities, we also make several improvements
which can also be applicable to PH schemes, in terms of
both definition and construction.

1.5 Related Work
We first briefly recap PH schemes, then overview other
cryptographic primitives which offer related security
guarantees but not those fundamental to PHE / PH.

1.5.1 Password-Hardening Services

Everspaugh et al. [2] introduced the notion of PH ser-
vices to replace salted hashes for login validation. Key-
rotation is also identified as an important property to
“heal the system” after compromise [2].

While Everspaugh et al. [2] formally defined partially-
oblivious pseudorandom functions (PO-PRF) services,
and informally suggested PH as an application, the sub-
sequent work by Schneider et al. [5] attempted to give
a formal definition (of a closely related notion called
partially-oblivious commitments) and a scheme provably
secure under the said definition. Unfortunately, the defi-
nition of Schneider et al. [5] was shown by Lai et al. [3]
to be flawed, as they discovered a devastating attack to
the scheme of Schneider et al. [5] which extracts user
passwords. To capture such attacks Lai et al. [3] gave
a new security definition. They also proposed a scheme
Phoenix which is secure under the new definition.

PHE services extend the security of PH as defined by
Lai et al. [3] to messages, such that encrypted messages
can only be decrypted with the correct password and the
help of the external rate-limiter.

Finally, we stressed again that our PHE not only per-
forms much better than the possible approach of applying
generic zero-knowledge proof to “glue” PH with an en-
cryption, but also leads to an implicit PH scheme which
is even more efficient than the state-of-the-art [3].

1.5.2 Password-Protected Secret Sharing

The main goal of password-protected secret shar-
ing (PPSS) or password-authenticated key-exchange
(PAKE) is also to protect a secret message (of an end-
user, with the help of possibly more than one server) in
such a way that it can only be recovered using the correct
password. Unlike the “game-based style” definition used
in this work and in PH, the security of state-of-the-art
PPSS/PAKE schemes [6,7] is usually proven in “simula-
tion style” under the UC framework [8].

PPSS in the public-key model implies threshold
PAKE [9] so we focus on PPSS. While it seems that PHE
can be constructed from PPSS by having the server hold

one of the shares and the rate-limiter hold the other, the
resulting scheme lacks important features of PHE.

Per-user rate-limiting. While global rate-limiting is
trivial, note that PHE schemes additionally allow (and
require) the rate-limiter to count the number of unsuc-
cessful login attempts of each user, and refuse to provide
decryption services to the server for a certain user (indi-
rectly) if the latter has attempted too many unsuccessful
logins. Existing PPSS schemes do not, nor can be easily
extended to, support per-user rate-limiting.

Key-rotation. Most PPSS schemes do not support key-
rotation. The only existing scheme with key-rotation [10]
is very inefficient: It requires “a few hundred exponenti-
ations” per number of shares [10].

1.5.3 Distributed Password Verification

Distributed password verification (DPV) protocols [11]
also requires the online service provider to seek help
from external crypto servers for verifying user pass-
words. Moreover, both notions explicitly feature key-
rotation mechanisms. Yet, unlike PH, DPV does not ex-
plicitly support per-user rate limiting, nor can the exist-
ing construction [11] be modified to support it. Unlike
PHE, DPV does not provide encryption functionality.

1.5.4 Other Related Work

Hidden credential retrieval (HCR) [12] also considers
having a crypto service to unlock credentials for users
who hold low-entropy passwords. Not protected by other
mechanisms, the crypto service in HCR can launch an in-
evitable offline dictionary attack to recover the user cre-
dential. HCR does not support key rotation either.

Password-based key-derivation or encryption [13–15]
encrypts messages directly using keys derived from pass-
words. As typical passwords have low entropy, salt val-
ues are also used. Yet, it is still vulnerable to brute-force
attacks by an attacker who obtained the salts database.

2 Password-Hardened Encryption (PHE)

We formalize password-hardened encryption, an exten-
sion of password-hardening, for encrypting messages
which can only be decrypted by the user password, the
secret keys of both the server and the rate-limiter.

2.1 Definition of PHE
Let 1λ be a λ -bit unary string of 1 which represents the
security parameter. Let P andM be the password space
and message space respectively. Let S and R refer to

4

the server and the rate-limiter respectively. We denote
by (u,v)←$ P`〈S(x),R(y)〉 the protocol P executed by
the parties S and R with common input `, local inputs x
and y, and local outputs u and v respectively. We denote
the empty string with ε .

A password-hardened encryption (PHE) scheme
consists of the efficient algorithms and protocols (Setup,
KGenS ,KGenR,Encrypt,Decrypt,Rotate,Update),
which we define as follows:

Setup and Key Generation. The following algorithms
initialize our PHE system.

pp← Setup(1λ). The setup algorithm generates the pub-
lic parameters pp.

(pkS ,skS)← KGenS(pp). The server runs KGenS(pp)
to generate a key-pair (pkS ,skS).

(pkR,skR) ← KGenR(pp). The rate-limiter runs
KGenR(pp) to generate a key-pair (pkR,skR).

We assume that all parties take pp, pkS , and pkR as
inputs in all algorithms and protocols.

Encryption. When an end user registers for an account
with password pw ∈ P and a secret message M ∈ M
(e.g., an AES key, which can also be chosen by the server
on behalf of the end user), the server engages in the
(labeled) encryption protocol with the rate-limiter R to
compute a record T with label `′:

((`′,T),ε)← Encrypt`〈S(skS ,pw,M),R(skR)〉.
The server S inputs a secret key skS , a password

pw ∈ P , a message M ∈M. The rate-limiter R takes
as inputs a secret key skR. Both parties take a common
input label `= (`S , `R). When the protocol concludes, S
outputs a record T with a label `′ = (`′S , `

′
R). R outputs

nothing, denoted by the empty string ε .
We assume the convention that `′ = ` or ` = ε . The

first condition is an exception which only appears in the
definition of forward-security, while the second holds in
all other situations, including normal executions in real-
world applications. In this case `′ is sampled during the
protocol execution. The label `′ consists of `′S and `′R,
which can be interpreted as the session identifiers or the
pseudonyms of the end user assigned by the server and
the rate-limiter respectively.

Decryption. When an end user logs in to the service pro-
vided by the server with a candidate password pw ∈ P ,
the server retrieves the corresponding encryption record
T and label ` for the user, and engages in the (labeled)
decryption protocol with the rate-limiter:

((f ,M),ε)← Decrypt`〈S(skS ,pw,T),R(skR)〉.
The server S inputs its secret key skS , the candidate

password pw, and the retrieved record T . The rate-limiter

R inputs its secret key skR. Both parties take a com-
mon input (non-empty) label `2. The server outputs a
flag f and a message M. The flag f is either ⊥ to in-
dicate failure (the rate-limiter aborts), 0 if the record or
the password is invalid, or 1 for a successful login. The
rate-limiter outputs nothing, i.e., the empty string ε .

Key Rotation and Record Update. The server S and
the rate-limiter R may decide to rotate their keys and
update the records, which can be due to a regular routine
or a compromise at either side. The process consists of
two steps, performed without involving any end user.

First, S and R engage in a key rotation protocol to
rotate their keys and compute an update token.

((pk′S ,sk
′
S ,τ),(pk

′
R,sk′R))← Rotate〈S(skS),R(skR)〉.

Their input is the respective secret key skS and skR.
When Rotate concludes, S outputs a rotated key-pair
(pk′S ,sk

′
S), and an update token τ . R outputs a rotated

key-pair (pk′R,sk′R).
With the token, S then locally runs an update algo-

rithm on each record T with label `.

T ′← Update`(τ,T). On input a label `, an update token
τ , and a record T (which encrypts some message M with
label `), the update algorithm outputs a new record T ′

(also encrypting M with label `).
One may consider a general treatment of update which

allows changing the encrypted message M. For simplic-
ity, we assume that M remains unchanged.3

Correctness. A PHE is correct whenever all honestly
generated records can be successfully decrypted to re-
cover the encrypted message with the correct password.
Moreover, if a record passes decryption with respect to
some secret keys, then the updated record also passes
decryption with respect to the rotated keys. Since cor-
rectness is subsumed by soundness and forward security,
we omit the formal definition.

2.2 Security of PHE

PHE is secure against persistent attackers. Intuitively
key-rotation can be seen as structuring the PHE proto-
col execution into separate rounds. In each round, the
attacker can compromise either the rate-limiter or the
server and use whatever he learned in the next round
without gaining additional advantage (as formalized in
Forward Security).

2Equivalently, one can think of `R where ` = (`S , `R) as part of
the first message sent from S to R during the execution of the protocol.

3In some scenarios, updating the messages in a certain meaningful
way should require the consent of the user (i.e., the involvement of the
user to supply the password), or expect the accompanying system sup-
ports some advanced functionalities (e.g., when M is used as the secret
key of AES, it is only useful if AES supports “efficient re-encryption”).

5

Hidb
PHE,A(1

λ)

1 : pp←$Setup(1λ), (pkR,skR)←$KGenR(pp)

2 : O := {P〈·,R(skR, . . .)〉 :

3 : P ∈ {Encryptε ,Decrypt`,Rotate : ` ∈ {0,1}∗}}
4 : // All rate-limiter outputs are given to adversary,

5 : // except for sk′R from Rotate〈·,R(skR)〉.

6 : // Rotate〈·,R(skR〉 updates skR embedded in all oracles to sk′R.

7 : (sk∗S ,χ,M
∗
0 ,M

∗
1 ,st)←$AO

1 (pp,pkR)

8 : pw∗ ←$ χ

9 : ((`∗,T ∗),ε)←$Encryptε 〈S(sk∗S ,pw
∗,M∗b),R(skR)〉

10 : b′ ←$AO
2 (st, `

∗,T ∗)

11 : return b′

Figure 2: Message Hiding Experiment

Both our definitions and our construction assume a
secure channel when executing honest interactions be-
tween server and rate-limiter. This assumption is also
made implicitly in the original definition of PH [3]. Prac-
tically this implies using a TLS connection between rate-
limiter and server, and updating long-term keys and cer-
tificates during key-rotation.

We formalize the security properties of PHE, extend-
ing those from password-hardening [3]. This obviously
makes a secure PHE scheme also a secure PH scheme.

Message Hiding (Figure 2). Strengthening the
(password-)hiding property of PH, the encrypted mes-
sage corresponding to a record should also remain hid-
den even if the the server (and its secret key) is com-
promised. Specifically, message hiding requires that an
adversary cannot distinguish whether a record T ∗ is en-
crypting M∗0 or M∗1 , even if these messages as well as the
distribution of the password is chosen by the adversary.
However, since by functionality the message can be re-
covered by engaging in the decryption protocol with the
rate-limiter using the correct password, the highest possi-
ble security level that we can hope for is upper-bounded
by the entropy of the password. Our formalization cov-
ers this by parameterizing the winning condition of the
adversary using the distribution of the passwords.

Formally, we model message hiding as an experi-
ment Hidb

PHE,A(1
λ) participated by a 2-stage adversary

A = (A1,A2) acting as the malicious server and a chal-
lenger acting as the honest rate-limiter. The adversaryA1
gets access to the encryption, decryption, and key update
oracles on chosen inputs. Eventually,A1 outputs a server
secret key sk∗S , a password distribution χ , two messages
M∗0 and M∗1 , and a state st.

The challenger picks a random password pw∗ from the
distribution χ , and encapsulates M∗b into a record T ∗ with
label `∗ honestly using sk∗S and pw∗ by locally emulating

the encryption protocol. Note that the communication
transcript of the emulation is not given to A. Intuitively
this is justified because the server was honest while the
record was created and we assume a secure channel.

Finally, A2 gets `∗ and T ∗, and must guess whether
M∗0 or M∗1 is encrypted by outputting a guess b′, which is
also output by the experiment.

Definition 1 (Message Hiding) A PHE PHE is message
hiding if, for any PPT adversary A = (A1,A2), there
exists a negligible function negl (λ) such that

∣∣∣Pr
[
Hid0

PHE,A(1
λ) = 1

]
−Pr

[
Hid1

PHE,A(1
λ) = 1

]∣∣∣
≤ 2

Q

∑
i=1

pi +negl (λ) ,

where the probability is taken over the random coins
of the experiment, pi is the probability of the i-th most
probable event in the distribution χ specified by the ad-
versary, and Q is the number of times that A2 queries
Decrypt`〈·,R(skR)〉 with input label `= (·, `∗R)4.

Partial Obliviousness (Figure 3). Our formalization
of partial obliviousness follows the recent definition for
PH [3] closely, but is adapted to our PHE setting. This
property hides the password and the encrypted message
against a malicious rate-limiter, e.g., during the execution
of the encryption and decryption protocols. It is partial
in the sense that it does not guarantee the anonymity of
the end user. In particular, it might be possible for the
rate-limiter to link executions of the encryption and de-
cryption protocols triggered by the same end user.

Formally, we model partial obliviousness as an exper-
iment OblbPHE,A(1

λ) participated by a 3-stage adversary
A = (A1,A2,A3) acting as the malicious rate-limiter,
and a “challenger” acting as the honest server. Initially,
A1 can interact through the oracles O (denoted by AO

1)
with the challenger in the protocols for encryption, de-
cryption, and key-rotation on inputs of its choice. The
server outputs of the protocols are given to A, with the
obvious exception of the rotated secret key from the ro-
tation protocol. Eventually, A1 outputs two password-
message pairs (pw∗0,M

∗
0 ,pw

∗
1,M

∗
1), with some state in-

formation st to be passed to A2. The password pw∗b
and message M∗b , where b is specified by the experiment,
is called the “challenge password” and “challenge mes-
sage” respectively.

4The constant 2 in the upper bound is due to the specific style and
proof technique which we do not think is inherent: We will eventu-
ally show that, for our construction, Hidb

PHE,A for both b ∈ {0,1}
are indistinguishable to a hybrid experiment except with probability
∑

Q
i=1 pi +negl (λ). Taking the union bound yields the constant 2.

6

OblbPHE,A(1
λ)

1 : pp←$Setup(1λ), (pkS ,skS)←$KGenS(pp)

2 : O := {P〈S(skS , . . .), ·〉 :

3 : P ∈ {Encryptε ,Decrypt`,Rotate : ` ∈ {0,1}∗}}
4 : (pw∗0,M

∗
0 ,pw

∗
1,M

∗
1 ,st)←$AO

1 (pp,pkS)

5 : // All server outputs are given to A, except for sk′S from Rotate〈S(skS), ·〉.

6 : // Rotate〈S(skS), ·〉 updates skS embedded in all oracles to sk′S .

7 : ((`∗,T ∗),st)←$Encryptε 〈S(skS ,pw∗b,M
∗
b),A2(st)〉

8 : // The server output (f ,m) from Decrypt`〈S(skS , . . . ,), ·〉 is withheld from A

9 : // if (`,pw) = ((`∗S , ·),pw∗0) or ((`∗S , ·),pw∗1).

10 : b′ ←$AO
3 (st, `

∗,T ∗)

11 : return b′

Figure 3: Partial Obliviousness Experiment

The challenger, acting as the server, then engages in
the encryption protocol using the empty label, the chal-
lenge password, and the challenge message with the ad-
versary A2 acting as the rate-limiter. Upon termination,
the challenger outputs a record T ∗ with label `∗ and sends
them to A3. The adversary A2 outputs a state state
which will also be passed to A3.

After the generation of the challenge record T ∗, A3
can still interact with the challenger through the oracles,
except that the decryption oracle will no loner return the
decryption result to A, if it is queried on inputs contain-
ing (`∗,pw∗0) or (`∗,pw∗1). This prevents A from win-
ning trivially. Eventually,A3 outputs a guess b′ of which
password-message pair is chosen as the challenge. The
experiment then simply outputs the value b′.

Definition 2 (Partial Obliviousness) A PHE PHE is
partially oblivious if, for any three-stage PPT adver-
sary A= (A1,A2,A3), there exists a negligible function
negl (λ) such that∣∣∣Pr

[
Obl0PHE,A(1

λ) = 1
]

−Pr
[
Obl1PHE,A(1

λ) = 1
]∣∣∣≤ negl (λ) ,

where the probability is taken over the random coins of
the experiment.

Soundness (Figure 4 and Figure 5). Soundness (Fig-
ure 4) ensures that if a record and its encrypted message
are generated by an honest server and a (possibly ma-
licious) rate-limiter, then the message can be recovered
by engaging in the decryption protocol using the correct
password (unless the rate-limiter aborts). On the other
hand, decrypting using an incorrect password is guaran-
teed to yield f = 0 (unless the rate-limiter aborts). This
property arguably suffices for practical applications.

To make the rate-limiter even more accountable, the
strong soundness property guarantees all properties of

SoundnessPHE,A(1λ)

1 : (pkR,skS ,pw,pw
′,M,st)←$A1(1λ)

2 : ((`,T),st)←$Encryptε 〈S(skS ,pw,M),A2(st)〉
3 : ((f ,M′),st)←$Decrypt`〈S(skS ,pw′,T),A3(st)〉
4 : b0← (f 6=⊥)
5 : b1← (pw = pw′∧ (f 6= 1∨M 6= M′))

6 : b2← (pw 6= pw′∧ f 6= 0)

7 : return b0∧ (b1∨b2)

Figure 4: Soundness Experiment

StrongSoundnessPHE,A(1λ)

1 : (pkR,skS , `, `
′,pw,pw′,T,st)←$A′(1λ)

2 : ((f ,M),st)←$Decrypt`〈S(skS ,T,pw),A2(st)〉
3 : ((f ′,M′),st)←$Decrypt`

′
〈S(skS ,T,pw′),A3(st)〉

4 : b0← (⊥ /∈ { f , f ′}) // Rate-limiter does not abort.

5 : b1← ((`,pw) = (`′,pw′)∧ (f ,M) 6= (f ′,M′))

6 : // Same labels and passwords, different behaviors

7 : b2← ((`,pw) 6= (`′,pw′)∧ f = f ′ = 1)

8 : // Record is valid under different label-password pairs

9 : return b0∧ (b1∨b2)

Figure 5: Strong Soundness Experiment

soundness, with some additional ones (Figure 5). These
additional requirements are similar to those in the bind-
ing property of PH. Specifically, we additionally require
that, even for a maliciously generated record, it is infea-
sible for the malicious rate-limiter to behave inconsis-
tently without getting caught (assuming that it does not
abort). The inconsistent behaviors include: 1) convince
the server to output differently when decrypting the same
record using the same password and the same label; 2)
convince the server that the record is valid when decrypt-
ing with different label-password pairs.

Definition 3 ((Strong) Soundness) A PHE PHE is
sound if, for any PPT adversary A = (A1,A2,A3),
there exists a negligible function negl (λ) such that

Pr
[
SoundnessPHE,A(1λ) = 1

]
≤ negl (λ) .

Furthermore, it is strongly sound if it also holds that

Pr
[
StrongSoundnessPHE,A(1

λ) = 1
]
≤ negl (λ) .

The probabilities are taken over the random coins of the
experiments.

Forward Security (Figure 6). The key rotation phase
should heal the system in the sense that it renders the old

7

FwdSecb
PHE,A(1

λ)

1 : pp←$Setup(1λ)

2 : (skS ,skR,{(`i,pwi,Ti)}n
i=1,st)←$A1(pp)

3 : // for some n = poly (λ)

4 : ∀i ∈ [n], ((fi,Mi),ε)←Decrypt`i〈S(skS ,pwi,Ti),R(skR)〉
5 : if b = 0 then
6 : ((pk′S ,sk

′
S ,τ),(pk

′
R,sk′R))←$Rotate〈S(skS),R(skR)〉

7 : ∀i ∈ [n],T ′i ←$Update`i(τ,Ti)

8 : else
9 : (pk′S ,sk

′
S)←$KGenS(pp), (pk

′
R,sk′R)←$KGenR(pp)

10 : ∀i ∈ [n],((`′i,T
′

i),ε)←$Encrypt`i〈S(sk′S ,pwi,Mi),R(sk′R)〉
11 : // By the assumed convention, `′i = `i ∀i ∈ [n]

12 : endif
13 : b′ ←$A2(st,sk

′
S ,sk

′
R,T ′1, . . . ,T

′
n)

14 : return ((∀i ∈ [n], fi = 1) ∧ b′)

Figure 6: Forward Security Experiment

secret keys of the server and the rate-limiter useless to the
adversary. The old secret keys should not help the adver-
sary in recovering information from an updated record.
On the other hand, the rotated keys and updated records
should function the same as freshly generated keys and
records respectively.

In order not to consider all possible sequences of cor-
ruption of the server and the rate-limiter in all security
properties, we adopt the approach in the original PH def-
inition [3] to define a strong notion of forward security.
This property ensures that even for maliciously generated
secret keys for both the server and the rate-limiter, and
maliciously generated records, the rotated keys and up-
dated records are indistinguishable to freshly generated
keys and records respectively, except for the information
that is preserved for ensuring functionality, e.g., the en-
crypted messages and the labels.

Unlike the original definition [3], our definition allows
the adversary to generate multiple records. This def-
inition seems not to be equivalent to the single-record
variant, as an adversary against the single-record variant
cannot simulate a challenger of the multi-record variant
without knowing the update token chosen by the chal-
lenger of the single-record variant.

Definition 4 (Forward Security) A PHE PHE is for-
ward secure if for any two-stage PPT adversary A =
(A1,A2) there exists a negligible function negl (λ) with∣∣∣Pr

[
FwdSec0

PHE,A(1
λ) = 1

]
−Pr

[
FwdSec1

PHE,A(1
λ) = 1

]∣∣∣≤ negl (λ) ,

where the probability is taken over the random coins of
the experiments.

3 Our Construction

Since PHE is an extension of PH with encryption func-
tionality, it is natural to construct a PHE scheme from
an existing PH scheme (e.g., [2, 3]). Recall that in a PH
scheme, when a new end user registers, the server and the
rate-limiter engage in an enrollment protocol and jointly
create a record which “encrypts” the password of the end
user. Later, when the end user logs in with a candidate
password, the server and the rate-limiter can jointly ver-
ify whether the candidate password is valid.

3.1 Why Generic Construction Fails

Our first attempts are to construct PHE generically from
PH or PO-PRF. Below, we discuss why these approaches
are unsatisfactory.

3.1.1 Generic Construction from PH

At first glance, a PHE scheme might be built on top of
a PH scheme, by additionally encrypting the message in
the enrollment protocol, in such a way that it can be de-
crypted if and only if a valid candidate password is pro-
vided. Below, we sketch a plausible construction.

Suppose there exist a PH scheme and a public-key en-
cryption (PKE) scheme which are both key-rotatable. In
the encryption phase, the server and the rate-limiter en-
gage in the enrollment protocol of the PH scheme. The
server additionally encrypts the message using PKE to
the rate-limiter. Later, in the decryption phase, the server
and the rate-limiter engage in the validation protocol of
the PH scheme. The server additionally requests the rate-
limiter to decrypt a possibly blinded / rerandomized ver-
sion of the ciphertext.

One can immediately notice that the above construc-
tion suffers from a mix-and-match attack: The server
can request decryption of arbitrary combinations of en-
rollment records and ciphertexts in the decryption phase.
One way to avoid this issue is to let the rate-limiter sign
the record-ciphertext pairs as they are created, and let
the server prove in zero-knowledge that a decryption re-
quest is on a record-ciphertext pair which is blinded /
rerandomized from another pair for which it possesses a
signature. However, such an approach seems inefficient
since the server likely needs to prove complex statements
involving PH protocol execution, PKE encryption, and
signature verification.

3.1.2 Generic Construction from PO-PRF Services

We also investigate the possibility of building PHE
generically from PO-PRF. Similar to the construction of

8

symmetric-key encryption from PRFs, where a cipher-
text C which encrypts message M using key k is com-
puted as C = (PRF(k,r)⊕M,r), one idea is to encrypt a
message by the output of the PO-PRF as a one-time pad.

When instantiated with PYTHIA, the only known con-
struction of PO-PRF, a PRF value is a group element
e(H1(un),H2(pw))

k in the target group of a crypto-
graphic bilinear map e. A ciphertext of M would thus
be C = e(H1(un),H2(pw))

k ·M. The problem with this
approach is that, after key-rotation (from k to rk where r
is a random field element), the corresponding ciphertext
becomes C′ =Cr = e(H1(un),H2(pw))

rk ·Mr, which en-
crypts Mr instead of M.

Another idea is to use the output of a PO-PRF as
the secret key of a key-homomorphic encryption (KHE)
scheme. However, recall that PRF values of PYTHIA are
target group elements, and hence the companion KHE
scheme must have target group elements as secret keys.
Assuming the decryption algorithm of the KHE scheme
only uses generic group operations, it seems rather dif-
ficult to “protect” the secret key, i.e., one may infer
the secret key from the ciphertext and its correspond-
ing decryption result by “undoing” the generic group op-
erations involved in decryption. Additional machinery
such as another bilinear map might be needed. In other
words, this approach needs a cryptographic trilinear map
of which no known efficient construction exists.

3.2 Non-Blackbox Approach: Intuition

We adopt an alternative approach which upgrades the PH
scheme Phoenix by Lai et al. [3] in a non-black-box way
into an efficient PHE scheme. The transform is based
on the observation below: In the validation protocol of
Phoenix, the server first sends to the rate-limiter a PKE
ciphertext encrypting a pseudorandom value generated
by the rate-limiter. The latter decrypts the ciphertext and
checks whether the pseudorandom value is well-formed,
or equivalently whether the candidate password is valid.
If so, it proves the well-formedness in zero-knowledge
to the server. The rate-limiter essentially provides an
“equality check service” to the server. With this obser-
vation, the idea is to turn such a service to a “conditional
decryption service” where decryption is performed if the
equality check is satisfied.

However, we can do even better. Observe that the use
of PKE in Phoenix is actually not necessary: It does not
offer protection against a malicious rate-limiter since the
latter knows the decryption key anyway. It also does
not offer protection against a malicious server, since the
(password-)hiding property relies on the fact that the
server must guess the correct password to derive (a ci-
phertext of) the pseudorandom value. We believe that the
use of PKE in Phoenix is inherited from the scheme [5]

the authors were trying to fix.
In the following, we construct an extremely simple

PHE scheme by taking the core idea of Phoenix, strip-
ping off the PKE operations, and adding a (symmetric-
key) encryption mechanism for messages. The only
drawback of removing the PKE operations seems to
be that we now explicitly require that the communi-
cation between the server and the rate-limiter is done
through a secure channel, which was implicitly assumed
in Phoenix5.

Along with the simplification and the upgrade, we also
let the rate-limiter generate a proof even if the pseudo-
random value given by the server, or equivalently the
given candidate password, is invalid (which was missing
in Phoenix). With these modifications the scheme sat-
isfies the strong soundness definition (which subsumes
binding), making the rate-limiter more accountable.

3.3 Description of Construction

Let G be a finite multiplicative cyclic group of order
q with identity element I. Let Π.(Gen,Prove,Vf) be
a non-interactive zero-knowledge proof of knowledge
(NIZKPoK) scheme for discrete logarithm representa-
tions in G (e.g., the generalized Schnorr protocol). Let
HS ,HR : {0,1}∗→ G be hash functions (to be modeled
as random oracles in the security proof). Let the pass-
word space and message space to be P := {0,1}∗ and
M :=G respectively. Our construction is as follows.

Setup and Key Generation (Figure 7). The setup pro-
cedure generates a common reference string crs (which
defines HS and HR) and a generator G of the group G.
The server and the rate-limiter generate their keys using
KGenS and KGenR respectively and individually. The
server secret key consists of an integer y ∈ Zq. The rate-
limiter secret key is x ∈ Zq and the public key is X = Gx.

Encryption (Figure 8). When a new end user registers
for a new account with the server, the server engages in
an encryption protocol with the rate-limiter. The server
inputs its secret key, the password pw, and the message
M, while the rate-limiter inputs its secret key. (As men-
tioned in the discussion of the definitions, the input label
` is always an empty string in real-world usage.)

The protocol is as follows. In the usual case where `
is empty, the server and the rate-limiter sample random
nonces nS and nR respectively. These nonces serve as
session identifiers or pseudonyms of the registering end
user. Otherwise, if ` is non-empty, the parties simply
parse it as the tuple (nR,nS).

5In the hiding experiment, the communication transcript of the en-
rollment protocol for creating the challenge record is not given to the
adversary. Their security proof indeed makes use of this fact.

9

Setup (1λ)

crs←$ Π.Gen(1λ)

G←$G
return (crs,G)

KGenS(pp)

pkS ← ε

skS ← y←$Zq

return (pkS ,skS)

KGenR(pp)

x←$Zq

X ← Gx

pkR← X

skR← x

return (pkR,skR)

Figure 7: Setup and Key Generation of PHE

Next, the parties jointly create the ciphertext
(Hx

R,0Hy
S,0,H

x
R,1Hy

S,1My)6, where HS,b = HS(pw,nS ,b)
and HR,b =HR(nR,b) for b∈{0,1}7. To do so, the rate-
limiter sends the tuple (Hx

R,0,H
x
R,1) along with the rate-

limiter nonce nR to the server. The latter completes the
ciphertext by multiplying the tuple with (Hy

S,0,H
y
S,1My)

(component-wise). Finally, the server stores the resulting
ciphertext as the record T and the nonces nS and nR as
the label `′ for the registering end user.

Decryption (Figure 9). When an end user logs in with
a candidate password pw, the server looks up its corre-
sponding record T and label `, and engages in the de-
cryption protocol with the rate-limiter. The server inputs
its secret key skS , the label `, the record T , and the pass-
word pw. The rate-limiter inputs its secret key skR and
the label `. In a slightly different formulation, we can let
the server send ` with the first message to the rate-limiter.

Recall that the record T is in the form (T0,T1) =
(Hx

R,0Hy
S,0,H

x
R,1Hy

S,1My). To begin, the server computes
C0 as T0/HS(pw,nS ,0)y, which is equal to Hx

R,0 if the
password pw is correct. It sends C0 to the rate-limiter,
who checks if C0 is indeed equal to Hx

R,0. If so it sends
Hx
R,1, and a proof that the computation is done faithfully,

back to the server. The latter then verifies the proof, re-
covers M as (T1H−x

R,1H−y
S,1)

1/y, and outputs the flag f = 1
and the message M. Otherwise, the rate-limiter proves
that C0 and Hx

R,0 are not equal. The server verifies the
proof and outputs the flag f = 0 (and M = ε).

Key Rotation and Update (Figure 10). When either
one of the server and the rate-limiter is compromised, or
due to regular routine, they may engage in a key rota-
tion protocol to rotate their (public and) secret keys such
that they are distributed identically as freshly generated
keys. Then, the server locally runs the update algorithm

6The purpose of encrypting My instead of M is to “absorb” the effect
of key-rotation to y, so that M does not change after key-rotation.

7The input b essentially splits HR (and HS) into two independent
hash functions, thus saving the need to have a two-integer secret key.

on each record so that it is valid with respect to the new
keys. Note that the update is done without knowing the
passwords and messages corresponding to the records.

In the key rotation protocol, the rate-limiter generates
a tuple of random integers (α,β) and sends it to the
server8. The latter updates its secret key to y′ = αy.
Similarly, the rate-limiter updates its secret key to x′ =
αx+β . It also publishes its new public key X ′ = Gx′ .

To update each encryption record T without knowing
the encrypted message and the corresponding password,
the server runs the update algorithm on each record T
with its label `=(nR,nS). Recall that a record T is in the
form (T0,T1)= (Hx

R,0Hy
S,0,H

x
R,1Hy

S,1My). The algorithm
simply computes T ′ = (T ′0 ,T

′
1) as

(T ′0 , T ′1) =(T α
0 Hβ

R,0, T α
1 Hβ

R,1)

=(Hαx+β

R,0 Hαy
S,0, Hαx+β

R,1 Hαy
S,1Mαy)

=(Hx′
R,0Hy′

S,0, Hx′
R,1Hy′

S,1My′).

Correctness. The correctness of the scheme follows
immediately from the completeness of the NIZKPoK
scheme, and is subsumed by the soundness property.

3.4 Security Analysis
We state our formal results with proof sketches. Full
proofs are postponed to Appendix A.

Theorem 1 (Partial Obliviousness) Assume that DDH
is hard in G. Then, in the random oracle model, our
construction achieves partial obliviousness.

Proof 1 (Proof sketch) The proof is based on the obser-
vation that the adversary can only obtain (pseudoran-
dom) hashes of (pw∗b,M

∗
b) but not (pw∗1−b,M

∗
1−b), since

(essentially) the only way to obtain the latter is by query-
ing the decryption oracle on (`,pw) where `=(`∗S , ·) and
pw = pw∗1−b, which is refused by the oracle.

Theorem 2 (Message Hiding) If Π is zero-knowledge
and DDH is hard in G, then our construction achieves
message hiding in the random oracle model.

Proof 2 (Proof sketch) The core of the proof relies on
the fact that the adversary must submit a pseudorandom
value in order to gain any useful information about the
challenge message M∗b . However, since the pseudoran-
dom value is masked by the (pseudorandom) hash of the
challenge password pw∗, the only way to obtain the value
is through guessing pw∗.

8It is also possible to have the server and the rate-limiter jointly
generate these values, so that both parties are convinced that the values
are truly random. Yet, this is not necessary for proving security in our
model.

10

Encrypt`〈S(skS ,pw,M), ·〉

parse pkR as X , parse skS as y

if ` 6= ε then
parse ` as (nR,nS)

else

nS ←{0,1}λ

endif
HS,0← HS(pw,nS ,0), HS,1← HS(pw,nS ,1)

receive (nR,C,π) from R
HR,0← HR(nR,0), HR,1← HR(nR,1)

stmt← “∃x s.t. (C0,C1,X) = (Hx
R,0,H

x
R,1,G

x)”

if Π.Vf(crs,stmt,π) = 0 then
return ⊥

endif
T ← (C0Hy

S,0, C1Hy
S,1My)

`′← (nR,nS)

return (`′,T)

Encrypt`〈·,R(skR)〉

parse skR as x

if ` 6= ε then
parse ` as (nR,nS)

else

nR←{0,1}λ

endif
HR,0← HR(nR,0), HR,1← HR(nR,1)

C = (C0,C1)← (Hx
R,0,H

x
R,1)

stmt← “∃x s.t. (C0,C1,X) = (Hx
R,0,H

x
R,1,G

x)”

wit← x

π ←Π.PoK(crs,stmt,wit)

send (nR,C,π) to R
return ε

Figure 8: Encryption Protocol of PHE

Theorem 3 (Strong Soundness) If Π is sound and has
the proof of knowledge property, then our construction is
strongly sound.

Proof 3 (Proof sketch) The proof follows almost imme-
diately from the soundness and the proof of knowledge
property of Π: An adversary against (strong) soundness
must convince an honest server to either draw an incor-
rect conclusion about the validity of a record or a can-
didate password, or recover a different message which
is not encrypted in the record. This means that the ad-
versary is able to produce proofs of contradicting state-
ments, one of which must be false. We can thus use such
an adversary as a black-box to break the soundness of Π.

Theorem 4 (Forward security) Our construction is
perfectly forward secure.

Proof 4 (Proof sketch) The truth of the claim follows
from the fact that, for any tuples (x,y) and (x′,y′) in Z2

q,
there exists a unique mapping (x′,y′) = (αx+β ,αy) de-
fined by (α,β) in Z2

q which maps (x,y) to (x′,y′).

4 Evaluation and Deployment

We report the performance evaluation of our prototype
implementation and discuss the possibility of practi-
cal deployment. We use SHA256 for the hash func-
tions and NIST P-256 for the group G. For the zero-
knowledge proofs we use sigma protocols [16] based on

Fiat-Shamir [17] for equality and inequality of discrete
logarithm representations.

4.1 Evaluation
For a detailed evaluation, we implemented our scheme
using the Charm [18] crypto prototyping library and the
Falcon Web Framework. Data is passed through GET
parameters to the crypto service and the results are com-
municated back in JSON. We used a dedicated virtual
machine on an off-the-shelves server and assigned one
up to eight cores to the virtual machine. The host system
for the local setup is running nginx and uwsgi on a 10
Core Intel Xeon E5-2640 CPU.

For all studies, we assume an https connection with
keep-alive. We consider this realistic for busy sites where
a dedicated connection is kept open between the PHE
service and the user-facing webserver.

To estimate the resources needed, we evaluated the
throughput of the PHE rate-limiter. The measurements
are obtained using the Apache benchmark tool. As
shown in Figure 11, the PHE crypto service perfectly
scales to more cores and can handle more than 525 en-
cryption and (successful) decryption (i.e., registration
and login) requests per second (per core). As shown
in Table 1, this is a significant improvement even com-
pared to PHOENIX which has no encryption functional-
ity: PHOENIX can process 371 validation requests using
similar hardware [3]. Enrollment in PHOENIX is signif-
icantly cheaper (1500 requests per second [3]) than en-

11

Decrypt`〈S(skS ,pw,T), ·〉

parse pkR as X

parse skS as y

parse T as (T0,T1)

parse ` as (nR,nS)

HR,0← HR(nR,0), HR,1← HR(nR,1)

HS,0← HS(pw,nS ,0), HS,1← HS(pw,nS ,1)

C0← T0H−y
S,0

send C0 to R
receive (f ,C1,π) from R
if f = 1 then

stmt← “∃x s.t. (C0,C1,X) = (Hx
R,0,H

x
R,1,G

x)”

M← (T1C−1
1 H−y

S,1)
1/y

elseif f = 0∧C1 6= I then

stmt← “∃(α,β) s.t. (C1, I) = (Cα
0 Hβ

R,0,X
α Gβ)”

M← ε

endif
if Π.Vf(crs,stmt,π) = 1 then

return (f ,M)

endif
return (⊥,ε)

Decrypt`〈·,R(skR)〉

parse skR as x

parse ` as (nR,nS)

receive C0 from S
HR,0← HR(nR,0), HR,1← HR(nR,1)

if C0 = Hx
R,0 then

f ← 1, C1← Hx
R,1

stmt← “∃x s.t. (C0,C1,X) = (Hx
R,0,H

x
R,1,G

x)”

wit← x

else

f ← 0, r←$Zq, C1←Cr
0H−rx

R,0

stmt← “∃(α,β) s.t. (C1, I) = (Cα
0 Hβ

R,0,X
α Gβ)”

wit← (α,β) = (r,−rx)

endif
π ←Π.PoK(crs,stmt,wit)

send (f ,C1,π) to S
return ε

Figure 9: Decryption Protocol of PHE

HTTPS keep-alive
static page > 10,000
parameter 2,607.16
PYTHIA eval 128.50
Schneider et al. enroll 380.37
Schneider et al. validate 221.75
PHOENIX enroll 1,557.81
PHOENIX validate 371.34
PHE encrypt 525.04
PHE decrypt 524.21

Table 1: Rate-Limiter Requests per Second

cryption in our scheme, as the former does not involve
any zero-knowledge proofs. PYTHIA is even slower due
to the pairing-based construction and achieves 129 en-
rollment or validation requests per second [3].

Finally, we measure the throughput of the server.
Since the server needs to perform twice the amount of
exponentiations than the rate-limiter does, it is expected
that the throughput of the server is roughly half that of
the rate-limiter. This expectation is indeed confirmed by

the evaluation Figure 12, in which the server is utiliz-
ing the same set of machines as were used for the rate-
limiter-side evaluation. Specifically, the server can pro-
cess about 250 requests per core per second. Although
no measurement of the server throughput is available for
Phoenix [3], we expect our scheme comes on top since
fewer exponentiations (e.g., encryption and rerandomiza-
tion in Phoenix) are required. On the other hand, since
the server in Pythia does nothing but equality checks, its
computation cost should be negligible.

Considering current recommendations for best prac-
tice [19] on password hashing we note that algorithms
like scrypt or Argon2 [20] are usually configured to limit
login throughput to tens of requests per second which
is significantly slower than the overhead introduced by
PHE. It might be advisable to instantiate HS with such
a state-of-the-art hashing function for maximum protec-
tion. When doing so the overhead of PHE becomes tiny.

4.2 Scalability

Regarding the scalability of PHE, we make two remarks.
First, note that the state kept by the rate-limiter for each
server is small: It consists of one counter per end user

12

Rotate〈S(skS),R(skR)〉

Client S Server R
parse skS as y parse skR as x

α,β ←$Zq

(α,β)

y′← αy x′← αx+β

τ ← (α,β)

pk′S ← ε pk′R← Gx′

sk′S ← y′ sk′R← x′

return (pk′S ,sk
′
S ,τ) return (pk′R,sk′R)

Update`(τ,T)

parse pkR as X

parse ` as (nR,nS)

parse τ as (α,β)

parse T as (T0,T1)

HR,0← HR(nR,0)

HR,1← HR(nR,1)

T ′0 ← T α
0 Hβ

R,0

T ′1 ← T α
1 Hβ

R,1

return T ′← (T ′0,T
′

1)

Figure 10: Key-Rotation Protocol of PHE

1-c
ore

2-c
ore

4-c
ore

8-c
ore

500

1,000

1,500

2,000

2,500

3,000

re
q/

s

Encrypt
Decrypt-Success
Decrypt-Fail

Figure 11: Rate-Limiter throughput in req/s

of the server, solely for rate-limiting purposes. Second,
instances of the encryption, decryption, and key rotation
protocols (for the same or different servers) are indepen-
dent. Thus, it is expected that the throughput of the rate-
limiter scales linearly with the number of cores, except
for the inevitable overhead for threading.

4.3 Possibility of Deployment
We envision a practical deployment of the system due to
a mutual benefit of all parties – end users, online service
providers, and crypto service providers.

End Users. As the end users are registered for the ser-
vices provided by the online service providers, we as-
sume that the latter are trusted to a certain degree. Al-
though a new party, namely the rate-limiter, is introduced
for the transition from an existing, say access-control-
based, data security solution to the more secure PHE so-
lution, the end users need not trust any additional parties
due to the obliviousness property against rate-limiters. In

1-c
ore

2-c
ore

4-c
ore

8-c
ore

500

1,000

1,500

re
q/

s

Encrypt
Decrypt-Success
Decrypt-Fail

Figure 12: Server throughput in req/s

fact, the transition to PHE even reduces trust required to
the online service providers, since the latter can no longer
decrypt user data by themselves.

Online Service Providers. By providing a better secu-
rity solution to the end users, an online service provider
can improve its image which potentially popularizes its
services. The risk of financial losses due to data leak-
age is also reduced, since attackers would now need to
fully compromise both the online service provider and
the rate-limiter to decrypt user data. This is particularly
important for small companies whose developers are not
specialized in security. Assuming that the rate-limiters
are developed and maintained by security experts, it is a
reasonable assumption that these rate-limiters are much
harder to attack.

Crypto Service Providers. Crypto service providers
have financial incentives to run and maintain rate-
limiters, assuming online service providers and end users
are willing to invest in better security. The PHE solu-

13

tion also introduces a better division of labor: Security
experts can focus on developing and maintaining rate-
limiters which are specialized in security, while online
service providers can focus on providing (non-security)
services they used to provide.

4.4 Conversion of Existing Systems
An existing system can be converted gradually in at least
two ways. As an end user logs in, the server can retrieve
the record from the existing system (e.g., salted hash),
and create a new record encrypting a random message M
using PHE.

To convert the system in a single batch conver-
sion step, assuming the existing system stores pass-
words in the form of salted hashes (nS ,H(nS ,pw)),
the server samples a random message M, further
hashes each record to compute (nS ,H

y
S,0H

y
S,1) =

(nS ,H(H(nS ,pw),0)y,H(H(nS ,pw),1)yMy) (modeling
H as a random oracle and interpreting its output as a
group element), and communicate with the rate-limiter
to complete the PHE record.

Either way, the random message M is used as a sym-
metric key (e.g., for AES) to encrypt the existing (plain-
text) profile of the end user, and is discarded after en-
cryption. Note that for both approaches, the entire trans-
formation happens at the back-end and does not require
special actions from the end user.

5 Conclusion

We have proposed and constructed password-hardened
encryption (PHE) services, an extension to password-
hardening (PH) services, which not only protects pass-
words but also user data stored by an online service
provider, even if the latter is fully compromised. This
is achieved with the aid of an external yet minimally
trusted rate-limiter. PHE inherits all useful properties of
PH, namely obliviousness, hiding and forward security,
and features a stronger soundness property which makes
the rate-limiter more accountable. Forward security, or
the ability to rotate secret keys, is particularly important
in the data security context and is explicitly required by
standards such as the PCI DSS [1].

Our construction is obtained by taking the core idea
behind a recent PH scheme Phoenix [3], greatly simpli-
fying it, and augmenting it with encryption functional-
ity. The result is an extremely simple and efficient PHE
scheme, which can be readily deployed in existing on-
line services without affecting the end users at all or
changing the database infrastructure significantly. The
scheme incurs an even milder overhead than existing PH
schemes, and scales well to a large number of end users
and servers.

This work opens up a number of research directions.
First, it would be interesting to explore cryptographic
techniques to achieve rate limiting while preserving end
user anonymity and / or do so in a distributed manner
with more than one rate-limiter. The second is to con-
sider a stronger attacker model, in which the attacker
can partly observe the messages exchanged between the
end user and the server in the decryption phase. In this
setting, it is inevitable for the end user to also perform
cryptographic operations, which in turns allows stronger
security guarantees. The third is to revisit other crypto-
graphic primitives in the password-hardened paradigm.
Given the seamless nature of such paradigm (in the view
of the end users), it is more likely for the cryptographic
primitives to be deployed. Finally, new constructions,
perhaps based on other (e.g., lattice-based) complexity
assumptions or without using the random oracle, and
more efficient instantiations are always welcome.

References

[1] P. S. S. Council, “Requirements and security as-
sessment procedures.” PCI DSS v3.2, 2016.

[2] A. Everspaugh, R. Chaterjee, S. Scott, A. Juels,
and T. Ristenpart, “The pythia prf service,” in 24th
USENIX Security Symposium (USENIX Security
15), (Washington, D.C.), pp. 547–562, USENIX
Association, 2015.

[3] R. W. F. Lai, C. Egger, D. Schröder, and S. S. M.
Chow, “Phoenix: Rebirth of a cryptographic
password-hardening service,” in 26th USENIX Se-
curity Symposium (USENIX Security 17), (Van-
couver, BC), pp. 899–916, USENIX Association,
2017.

[4] R. Cramer and V. Shoup, “A practical public
key cryptosystem provably secure against adap-
tive chosen ciphertext attack,” in CRYPTO’98
(H. Krawczyk, ed.), vol. 1462 of LNCS, (Santa Bar-
bara, CA, USA), pp. 13–25, Springer, Heidelberg,
Germany, Aug. 23–27, 1998.

[5] J. Schneider, N. Fleischhacker, D. Schröder,
and M. Backes, “Efficient cryptographic pass-
word hardening services from partially oblivious
commitments,” in ACM CCS 16 (E. R. Weippl,
S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, eds.), (Vienna, Austria), pp. 1192–1203,
ACM Press, Oct. 24–28, 2016.

[6] S. Jarecki, A. Kiayias, and H. Krawczyk, “Round-
optimal password-protected secret sharing and T-
PAKE in the password-only model,” in ASI-
ACRYPT 2014, Part II (P. Sarkar and T. Iwata,

14

eds.), vol. 8874 of LNCS, (Kaoshiung, Taiwan,
R.O.C.), pp. 233–253, Springer, Heidelberg, Ger-
many, Dec. 7–11, 2014.

[7] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu,
“TOPPSS: Cost-minimal password-protected se-
cret sharing based on threshold OPRF,” in ACNS
17 (D. Gollmann, A. Miyaji, and H. Kikuchi, eds.),
vol. 10355 of LNCS, (Kanazawa, Japan), pp. 39–58,
Springer, Heidelberg, Germany, July 10–12, 2017.

[8] R. Canetti, “Universally composable security: A
new paradigm for cryptographic protocols,” in 42nd
FOCS, (Las Vegas, NV, USA), pp. 136–145, IEEE
Computer Society Press, Oct. 14–17, 2001.

[9] A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu,
“Password-protected secret sharing,” in ACM CCS
11 (Y. Chen, G. Danezis, and V. Shmatikov, eds.),
(Chicago, Illinois, USA), pp. 433–444, ACM Press,
Oct. 17–21, 2011.

[10] J. Camenisch, R. R. Enderlein, and G. Neven,
“Two-server password-authenticated secret shar-
ing UC-secure against transient corruptions,” in
PKC 2015 (J. Katz, ed.), vol. 9020 of LNCS,
(Gaithersburg, MD, USA), pp. 283–307, Springer,
Heidelberg, Germany, Mar. 30 – Apr. 1, 2015.

[11] J. Camenisch, A. Lehmann, and G. Neven, “Op-
timal distributed password verification,” in ACM
CCS 15 (I. Ray, N. Li, and C. Kruegel:, eds.), (Den-
ver, CO, USA), pp. 182–194, ACM Press, Oct. 12–
16, 2015.

[12] X. Boyen, “Hidden credential retrieval from a
reusable password,” in ASIACCS 09 (W. Li,
W. Susilo, U. K. Tupakula, R. Safavi-Naini,
and V. Varadharajan, eds.), (Sydney, Australia),
pp. 228–238, ACM Press, Mar. 10–12, 2009.

[13] J. Kelsey, B. Schneier, C. Hall, and D. Wagner, “Se-
cure applications of low-entropy keys,” in ISW’97
(E. Okamoto, G. I. Davida, and M. Mambo, eds.),
vol. 1396 of LNCS, (Tatsunokuchi, Japan), pp. 121–
134, Springer, Heidelberg, Germany, Sept. 17–19,
1998.

[14] B. Kaliski, RFC 2298: PKCS #5: Password-Based
Cryptography Specification Version 2.0. Internet
Activities Board, Sept. 2000.

[15] K. M. Moriarty, B. Kaliski, and A. Rusch, RFC
8018: PKCS #5: Password-Based Cryptography
Specification Version 2.1. Internet Activities Board,
Jan. 2017.

[16] J. Camenisch and V. Shoup, “Practical verifiable
encryption and decryption of discrete logarithms,”
in CRYPTO 2003 (D. Boneh, ed.), vol. 2729 of
LNCS, (Santa Barbara, CA, USA), pp. 126–144,
Springer, Heidelberg, Germany, Aug. 17–21, 2003.

[17] A. Fiat and A. Shamir, “How to prove yourself:
Practical solutions to identification and signature
problems,” in CRYPTO’86 (A. M. Odlyzko, ed.),
vol. 263 of LNCS, (Santa Barbara, CA, USA),
pp. 186–194, Springer, Heidelberg, Germany, Aug.
1987.

[18] J. A. Akinyele, C. Garman, I. Miers, M. W.
Pagano, M. Rushanan, M. Green, and A. D. Rubin,
“Charm: a framework for rapidly prototyping cryp-
tosystems,” Journal of Cryptographic Engineering,
vol. 3, no. 2, pp. 111–128, 2013.

[19] J. Steven and J. Manico, “Owasp password storage
cheat sheet.” https://www.owasp.org/index.

php/Password_Storage_Cheat_Sheet, 2016.

[20] A. Biryukov, D. Dinu, and D. Khovratovich, “Ar-
gon2: New generation of memory-hard func-
tions for password hashing and other applications,”
in IEEE European Symposium on Security and
Privacy, EuroS&P 2016, Saarbrücken, Germany,
March 21-24, 2016, pp. 292–302, IEEE, 2016.

[21] M. Naor and O. Reingold, “Number-theoretic con-
structions of efficient pseudo-random functions,” in
38th FOCS, (Miami Beach, Florida), pp. 458–467,
IEEE Computer Society Press, Oct. 19–22, 1997.

A Formal Security Proofs

Partial Obliviousness. If the DDH assumption holds
in G, and HS is modeled as a random oracle, then PHE
is partially oblivious. We prove by defining a sequence
of hybrid experiments for b∈ {0,1}, each differs slightly
from the previous:

Expb,0: is identical to OblbPHE,A.

Expb,1: The challenger simulates the random oracle HS
as follows. If A queries HS directly on an input X , the
challenger samples a random integer a←$Zq and pro-
grams HS(m) := Ga. However, if HS is invoked by the
challenger when executing the encryption protocol on
the password pw and the message M (and the empty la-
bel ε), it samples nS ←${0,1}λ and programs HS such
that HS(pw,nS ,0) = Ga0 and HS(pw,nS ,1)M = Ga1 for
random integers a0,a1←$Zq, assuming HS has not been
programmed on (pw,nS ,0) and (pw,nS ,1). The latter
assumption holds except with negligible probability as

15

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

nS is uniformly random. If the above assumption holds,
this experiment is functionally equivalent to Expb,0.
Expb,2: The challenger replaces the values
HS(pw,nS ,0)y and (HS(pw,nS ,1)M)y by random
values. This experiment is computationally indistin-
guishable to Expb,1 by the DDH assumption [21].

In the experiment Expb,2, the only information about
(pw∗b,M

∗
b) available to A are the uniformly random val-

ues (HS(pw
∗
b,n
∗
S ,0)

y and (HS(pw
∗
b,n
∗
S ,1)M

∗
b)

y, where
`∗ = (n∗R,n∗S), since the decryption oracle refuses to de-
crypt ciphertexts with the labels ` = (`∗S , ·) and pass-
words pw∗0 and pw∗1. The experiments Exp0,2 and Exp1,2
are thus identical in the view of A.

Message Hiding. If the DDH assumption holds in G,
Π is zero knowledge, and HS and HR are modeled as
random oracles, then PHE is message hiding. We prove
formally by defining a sequence of hybrid experiments,
each differs slightly from the previous:
Expb,0: is identical to Hidb

PHE,A.
Expb,1: The proofs are now simulated using the sim-
ulator guaranteed by the zero-knowledge property of
Π. This experiment is computationally indistinguishable
from Expb,0 by the zero-knowledge property of Π.
Expb,2: The challenger simulates the random oracles HS
and HR as follows. When HS (resp. HR) is queried on
some input m, the challenger samples a←$Zq and pro-
grams HS(m) := Ga (resp. HR(m) := Ga). This experi-
ment is functionally equivalent to Expb,1.
Expb,3: The challenger replaces the function HR(m)x by
a random function. The indistinguishability of Expb,3 to
Expb,2 follows from the DDH assumption in the random
oracle model [21].
Expb,4: When A queries the decryption oracle with the
label `=(·, `∗R), the challenger always rejects, i.e., it out-
puts a simulated proof that the value C0 is invalid. In
the following, we show that a distinguisher which distin-
guishes this experiment from Expb,3 cannot succeed with
a probability higher than that of guessing the password
pw∗, except with negligible probability. Then, the proof
is done since Exp0,4 and Exp1,4 are functionally identical.

After the modification made in Expb,3, note that the
challenger essentially acts as a conditional decryption or-
acle which, on input (nR,C0), checks if the ciphertext
is well-formed, i.e., whether C0 = HR(nR,0)x (which
is programmed to a random value), and if so outputs
C1 = HR(nR,1)x with a simulated proof of correctness.
Otherwise, it outputs a simulated proof of the statement
that C0 and C0 = HR(nR,0)x are not equal.

Recall that the challenge record is computed as[
T ∗0
T ∗1

]
=

[
HR(n∗R,0)xHS(pw

∗,n∗S ,0)
y

HR(n∗R,1)xHS(pw
∗,n∗S ,1)

y(M∗b)
y

]

where HR(n∗R,0)x and HR(n∗R,1)x are all uniformly ran-
dom values in the view of A. Thus, in the experiment
Expb,3, the only information of (pw∗,M∗b) available toA,
apart from the challenge record, is obtained via interact-
ing with the decryption oracle, which always rejects un-
less A guesses the uniformly random value HR(n∗R,0)x

correctly, which equivalently means guessing the value
HS(pw

∗,n∗S ,0) correctly. Since HS is a random ora-
cle, it holds except with negligible probability thatA has
queried HS at the point (pw∗,n∗S ,0). Thus, the challenger
can extract pw∗.

Soundness. If Π is sound and has the proof of knowl-
edge property, then PHE is strongly sound.

To prove such claim, we observe that if there exists
an adversary A which causes either of the soundness ex-
periments to output 1, then the challenger can extract two
proofs for two contracting statements respectively, which
breaks the soundness of Π. In the following, we assume
the server acted by A never aborts (otherwise the exper-
iment outputs 0).

Suppose there exists A such that the experiment
SoundnessPHE,A outputs 1 with non-negligible probabil-
ity. There are two cases. First, (pw= pw′∧(f 6= 1∨M 6=
M′)). Second, (pw 6= pw′∧ f 6= 0).

In either case, the challenger receives upon conclu-
sion of the encryption protocol a proof for the statement
“∃x s.t. (C0,C1,X) = (Hx

R,0,H
x
R,1,G

x)”. Then, in the
first case, suppose the first sub-case f 6= 1 happens. It
means that the challenger receives a proof for the state-
ment “∃(α,β) s.t. (C1, I) = (Cα

0 Hβ

R,0,X
α Gβ)”, which

equivalently means “∃x s.t. C0 6= Hx
R,0∧X = Gx)”. Since

the statements are contradictory, either one is false. The
challenger can thus be turned into an adversary against
the soundness of Π. Similarly, in the second sub-case,
M 6= M′. This means that the challenger has a proof of
“∃x s.t. (C′1,X) = (Hx

R,1,G
x)” for some C′1 6=C1, another

contradicting statement.
For the second case, since pw 6= pw′, the challenger

sends C′0 which is not equal to C0 except with negli-
gible probability to A in the decryption protocol. The
contradicting statement here is then “∃x s.t. (C′0,X) =
(Hx

R,0,G
x)”.

The analysis of the other experiment is similar. We
describe it for completeness. Suppose there exists A
such that the experiment StrongSoundnessPHE,A outputs
1 with non-negligible probability. There are again two
cases. First, ((`,pw) = (`′,pw′) ∧ (f ,M) 6= (f ′,M′)).
Second, ((`,pw) 6= (`′,pw′)∧ f = f ′ = 1).

For the first case, since (`,pw) = (`′,pw′) the same
message C0 is sent from the challenger to A in the
decryption protocols. We then split into two sub-
cases. First, f = 0 but f ′ = 1. The contradicting

16

statements are thus “∃x s.t. (C0,X) = (Hx
R,0,G

x)” and
“∃x s.t. (C0,X) 6= (Hx

R,0,G
x)”. Second, f = f ′ = 1

but M 6= M′. Here, the contradicting statements are
“∃x s.t. (C1,X) = (Hx

R,1,G
x)” and “∃x s.t. (C′1,X) =

(Hx
R,1,G

x)” for some C′1 6=C1.
For the second case, since (`,pw) 6= (`′,pw′), dis-

tinct C0 and C′0 are sent instead with high proba-
bility. The contradicting statements in this case are
“∃x s.t. (C0,X) = (Hx

R,0,G
x)” and “∃x s.t. (C′0,X) =

(Hx
R,0,G

x)”. This completes the proof.

Forward Security. We show that PHE is perfectly for-
ward secure. To prove such claim, it suffices to show that
the secret keys sk′S and sk′R output from the rotation pro-

tocol is identically distributed as fresh secret keys. The
public keys and the records are uniquely determined by
the secret keys.

For any client and server secret keys x and y, there is a
one-to-one correspondence between each fresh key pairs
(x′,y′) ∈ Z2

q and each tuple of randomness (α,β) ∈ Z2
q

chosen in the rotation protocol, given by{
x′ = αx+β

y′ = αy
≡

{
α = y′/y
β = x′−αx

.

Thus, the distribution of (x′,y′) which is sampled uni-
formly from Z2

q and that which is computed from a uni-
formly random tuple (α,β) are identical.

17

	Introduction
	Password-Hardening Services
	Password-Hardened Encryption
	General Applicability of PHE

	Our Contributions
	Technical Overview
	A Simpler and More Efficient Construction
	Stronger Soundness using Efficient Proofs
	Strengthened yet Simplified Definitions

	Related Work
	Password-Hardening Services
	Password-Protected Secret Sharing
	Distributed Password Verification
	Other Related Work

	Password-Hardened Encryption (PHE)
	Definition of PHE
	Security of PHE

	Our Construction
	Why Generic Construction Fails
	Generic Construction from PH
	Generic Construction from PO-PRF Services

	Non-Blackbox Approach: Intuition
	Description of Construction
	Security Analysis

	Evaluation and Deployment
	Evaluation
	Scalability
	Possibility of Deployment
	Conversion of Existing Systems

	Conclusion
	Formal Security Proofs

